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SYNOPSIS

The purpose of this series of studies is to develop finite element computer models of
the mechanical properties of cellular polymers, especially open cell foams. Using finite
element methods, both the properties of the material making up the struts, as well as
the geometrical structure of the cell, can be readily varied. The series of studies begins
with two-dimensional hexagonal honeycombs because of their ease of analysis and
comparison with previous works. Comparison of the present solutions and analytic
ones have been conducted, and excellent agreement is obtained. The effects of cell
dimensions, such as strut length, strut depth, and cell height, of irregular hexagons
on the effective Young’s modulus of foams were studied in the low strain and elastic
regime. Load direction and cell geometry anisotropy effects are also investigated. In
addition, the effects of friction model and the specimen size on the effective Young’s
modulus of the foam are studied. Nonuniform strut thickness was also a variable.
The modulus effects of these variations in geometry ranged from minimal to highly
significant and provide an understanding of geometry effects on foam performance.
q 1997 John Wiley & Sons, Inc.

INTRODUCTION the foam cells. Mechanical properties of polymer
foams strongly depend on the density, the poly-
meric materials of cell struts, and geometric net-With the recent determination that chlorofluoro-

carbons deplete the ozone in the upper atmo- work structures. Therefore, it is necessary to eval-
uate mechanical properties of such materialssphere, their use in the production of flexible ure-

thane foam has been curtailed. This means that associated with parameters such as cell geometry
and foam density.soft, low density foam using water and other non-

CFC blowing agents must be developed. In addi- Foam materials may be classified according to
the following two type of cells: open-cell andtion, there is a need to understand the perfor-

mance of the high-load-bearing foams used for closed-cell foams. The topology of a typical foam
is quite complex; it consists mainly of a space-carpet underlayment, for example, to increase

load bearing capacity and durability under cyclic filling array of cells. Each cell is built up of trian-
gular cross-sectional struts. These cells may beloading.

It is expected that the foam performance is af- quite uniform or may be of varying size. While
open-cell foams have their cavities connected,fected both by the mechanical properties of strut

materials as well as the geometry and topology of closed-cell foams have isolated cavities filled with
trapped air. Different approaches have been used
in analyzing the mechanical behavior of foam ma-
terials. A micrograph of a typical open cell ure-

* To whom correspondence should be addressed.
thane foam being modeled here is shown in Figure
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383

3793/ 8E70$$0027 07-31-97 14:29:14 polaas W: Poly Applied



384 SWELLAM ET AL.

pecially the closed-cell and rigid foams, as com-
posite materials. Consequently, they used the
equations developed for composite materials to
predict the behavior of foam materials. Others2,3

viewed foam materials as a spatially periodic
structure that has a repeated unit cell composed
of struts (and/or plates) connected together. The
later group of researchers employed beam theory
in analyzing a single unit cell of the foam and
subsequently expressed the Young’s modulus
(and other elastic properties) in terms of the di-
mensions of the unit cell. The structural models
of Gibson and Ashby2 and Warren and Kraynik3

have been developed in order to estimate the me-
chanical properties of cellular materials. Two
models were based on two different unit cells with
different deformation mechanisms, and assump-
tions as will be shown later.

Figure 2 A schematic of foam.The effects of cell thickness and strut Young’s
modulus are important factors that must be con-
sidered in determining the Young’s modulus of

behavior of two-dimensional hexagonal honey-the cellular materials. For example, cell struts of
combs with various material properties and geom-foam materials are generated by packing spheri-
etry is investigated in the low strain and elasticcal bubbles together, which are produced by diffu-
regime. Finite element analyses are employed tosion of gases. The polyurethane polymer is ex-
determine the effective elastic modulus of thepanded or blown by the carbon dioxide gases or
foams.other blowing agent. Therefore, as shown in Fig-

ure 2, the thicknesses of the struts are typically
greater near the intersections than in the center.
Analytic models have limitations to analyze the ANALYSIS
real materials since cell shapes are not uniform
and material properties for each strut are nonho- Beam Theory
mogeneous.

In the present study, macroscopic deformation The equilibrium equations of a differential beam
segment with its longitudinal axis coinciding with
the X-axis of a Cartesian coordinate system and
loaded with distributed longitudinal and trans-
verse loads are given by the following:

dN
dx

/ F Å 0 (1)

dM
dx

/ Q Å 0 (2)

dQ
dx

/ S Å 0 (3)

where F and S are the components of the applied
load in the axial and the perpendicular directions,
respectively; N and Q are the normal and shear
forces respectively; and M is the beam bending

Figure 1 A micrograph of foam. moment.
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Geometric relations are as follows:

1 Å du
dx

(4)

k Å du
dx

(5)

b Å dv
dx
0 u (6)

where 1 and b are the axial and shear strains; k
is the curvature in the plane; u and v are the
displacements in the X and Y directions, respec-
tively; and u is the rotation in the X -Y plane.

Constitutive relations for linear elastic materi-
als can be defined as follows:

N Å EA1 (7)
Figure 3 Geometry of honeycomb.

M Å EIk (8)
two-dimensional hexagonal honeycomb. They con-

Q Å GAb (9) sidered the bending deformations in the struts of
one hexagonal cell, which they considered as the

where A and I are the area and the first moment repeated unit cell (see Figs. 3 and 4). Invoking
of inertia of the beam cross section, and G and the equilibrium conditions, load-deformation rela-
E are the shear and Young moduli for the beam tions, and the definition of the stiffness for the
material. loadings in the X and Y directions, Gibson and

If shear deformations are neglected (the shear Ashby2 obtained the following:
strain b Å 0), the equations reduces to those of
the beam theory without shear deformations, Ex

Es
Å S t

lD
3 cos u

S h
l
/ sin uDsin2 u

(12)which are given by the following:

d2M
dx2 0 S Å 0 (10)

k Å d2v
dx2 (11) Ey

Es
Å S t

lD
3 S h

l
/ sin uD
cos3 u

(13)

while the axial equations remain unchanged.
mxy Å

cos2 u

S h
l
/ sin uDsin u

(14)

Structural Models

Several analytical models have presented for pre-
dicting the mechanical properties of the foam mate-
rials. Although such models employed Euler beam
theory in analyzing the repeated unit cell of the myx Å

S h
l
/ sin uDsin u

cos2 u
(15)

spatially periodic structure, the different models
were based on different deformation mechanisms
and assumptions. The models of Gibson and Ashby2

and Warren and Kraynik3 represent two of the most Gxy

Es
Å S t

lD
3 S h

l
/ sin uD

S h
l D

2S1 / 2h
l Dcos3 u

(16)common structural models that are based on two
different deformation mechanisms.

Gibson and Ashby2 presented a solution for the
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the spatially periodic structure (see Fig. 4). The
linear homogeneous deformation of unit cell is
completely determined by the affine displacement
of two strut midpoints with respect to the third
strut midpoint. After invoking the load-displace-
ment relations, equilibrium equations, compati-
bility conditions, and the elastic stress–strain re-
lations of transversely isotropic materials, War-
ren and Kraynik3 expressed the Young’s modulus
for honeycombs with regular hexagons as follows:

Ec Å
2√

3(N / 3M )
(18)

Gc Å
1

2
√
3(N / M )

(19)

mc Å
(N 0 M )

(N / 3M )
(20)

For invariable strut depth,

Figure 4 Finite element model.
M Å L1

Est
(21)

where t is the strut depth, l is the length of in- N Å 4L3
1

Est3 (22)
clined strut, h is the height of vertical strut, q is
the strut inclination with the horizontal, Es is the
Young’s modulus for the strut material, Ex is the L1 Å LU 0 t

2
√
3

(23)
Young’s modulus for the foam material in the X-
direction, Ey is the Young’s modulus for the foam

where Es is the Young’s modulus for the strut ma-material in the Y-direction, Gxy is the shear modu-
terial, Ec is the in-plane Young’s modulus for thelus for the foam material in the X -Y plane, mxy is
transversely isotropic foam, Gc is the in-planethe Poisson’s ratio for loading in the X-direction,
shear modulus for the transversely isotropic foam,and myx is the Poisson’s ratio for loading in the
mc is the in-plane Poisson’s ratio for the trans-Y-dir.
versely isotropic foam, and L is half of the strutIt should be noted that Gibson and Ashby’s
length.model is limited to regular and irregular but geo-

metrically similar hexagonal cells; for the regular
hexagonal cells ( l Å h ) , the foam is transversely

Finite Element Modeling of Foam Materialsisotropic, and the above Ex and Ey solutions re-
duces to The finite element approach is an alternative to

the solution of the governing equations. In the
finite element approach, the entire domain is di-Ex

Es
Å Ey

Es
Å 2.3S t

lD
3

(17) vided into smaller elements; each element has its
set of degrees of freedom (undetermined displace-
ment components at the nodes of the element).
These degrees of freedom are used in expressingOn the other hand, Warren and Kraynik3 ana-

lyzed two-dimensional honeycombs of regular the displacements fields over the element domain.
The degrees of freedom are interpolated over thehexagons whose strut length is equal to 1. They

applied the affine displacement theory to their re- element domain with preselected approximate
functions, usually polynomials. The equilibriumpeated unit cell, which must deform in an anti-

symmetric fashion as dictated by the nature of conditions lead to a system of equations that can
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be expressed in a matrix form with the matrix of where 1i is the generalized strain vector, and Bij is
strain-displacement matrix. By using the virtualcoefficients being the element stiffness matrix

that multiplies the displacements.4,5 The element work principle and eq. (25), the finite element
formulation of a beam element can be obtained asstiffness matrix is calculated from the interpola-

tion functions. The overall stiffness matrix of the the following:
structure is then assembled, and the system of

KijUj Å Pi (26)equations for the whole structure are solved for
the displacements (nodal degrees of freedom). where Kij is global stiffness matrix, Uj is the global

For beam elements without shear deformation, vector of nodal displacement, and Pi is global
the element’s essential nodal degrees of freedom nodal force vector. More detail about the finite
are the end displacements perpendicular to the element formulation can be found in Bathe4 and
beam axis (provided that the axial deformations Hughes.5
are neglected). The curvature is a second deriva-
tive of the displacements while the rotations are Geometry and Boundary Conditions
the first derivative. Thus, determining the dis-

Compression performance of polyurethane foamsplacements would be sufficient for subsequent de-
is of primary importance since cushioning in-termination of curvature and rotations. Neverthe-
volves mostly compressive loading. Some specialless, a complete set of nodal degrees of freedom
requirements and limitations should be consid-are usually used. The complete set of degrees of
ered for the compression machine test. Loadsfreedom include the end rotations as well as the
must be applied flat and perpendicular to the axisend displacements. In such cases, the transverse
of the specimen. There is friction between headsdisplacement field over the element is expressed
of the testing machine or bearing plates and thein terms of the interpolation (shape) functions,
end surfaces of the specimen due to lateral expan-end rotations, and end displacements.
sion of the specimen. Usually, plain bearing platesIn the case of beam elements with shear defor-
are used to apply loads perpendicular to the speci-mations, the essential set of degrees of freedom
men axis so as not to cause bending by eccentricincludes the end rotations as well as end displace-
loading.ments; the rotations and the displacements are

To simulate the compression test of foam mate-independent variables, as shown in eq. (6) of the
rials, all nodes on that surface are tied togethershear strain. Hence, the rotations and displace-
with multiple point constraints in order to guar-ments are interpolated separately. Interpolation
antee that all surface displacements perpendicu-functions for the displacements and rotations
lar to the loaded surface should be equal. Frictionneed not be of the same order since the rotations
between the heads of the testing machine or bear-and the displacements are independent. Once the
ing plates and the end surfaces of the specimeninterpolation functions are determined, the stiff-
is also modeled by multiple point constraints.ness matrix is formed, and the displacements and

As shown in Figure 4, the X and Y axes arerotations are determined.
axes of symmetry. Consequently, if the nodes onThe general case of a framed structure in which
the X and Y axes are restrained from moving inthe members are subjected to both axial and flex-
the X and Y directions, respectively, only the up-ure deformations is handled by assuming the ab-
per right quarter of the considered area can besence of any coupling between the axial and flex-
analyzed. Moreover, the loaded nodes on theure stiffness mechanisms. The displacement
loaded surface were restrained from moving infields within each element can be assumed as
the direction perpendicular to the loading direc-
tion and were also tied together (with multipleui Å Nijqj (24)
point constraints) such that all the loaded nodes
displaced equally in the loading direction.where ui is the generalized displacement vector,

Nij is interpolation function matrix, and qj are
Young’s Modulus Calculation from the Finitenodal degrees of freedom.
Element AnalysesThe geometric relations can be found by differ-

entiating the above with respect to the coordinate The displacement of the loaded nodes (Df .e . ) was
used to calculate the Young’s modulus (Ef .e . ) of
the analyzed area through the following equation:1i Å Bijqj (25)

3793/ 8E70$$0027 07-31-97 14:29:14 polaas W: Poly Applied



388 SWELLAM ET AL.

men due to lateral expansion of the specimen
Ef .e . Å

PH
Df .e.A

(27) should be carefully considered for machine test-
ing. In order to simulate such friction effect, mul-
tiple point constraints are applied to all nodes onwhere Ef .e . is the Young’s modulus for the foam
the end surface of specimen. Friction factor is onematerial calculated from the finite element; P is
with applied constraints and is zero without ones.the applied load; H is the model height; and A is

In this section, we study how such friction andthe model cross sectional area, which is perpen-
the specimen size affect the effective Young’s mod-dicular to loading direction.
ulus of foams. Two loading conditions (verticalIt should be emphasized that in cases where
and horizontal) are considered, and five differentthe entire model width is loaded, the displace-
size models (rc18 1 19, rc18 1 30, rc18 1 40,ment of nodes on the loaded surface are guaran-
rc27 1 19, and rc32 1 19) are used. Geometricteed equal since all the nodes on that surface are
dimensions of unit cell and element breadth b aretied with multiple point constraints.
identical for all models. Finite element solutions
without friction effect have a good agreement with
Gibson and Ashby’s results, as shown in FiguresRESULTS AND DISCUSSIONS
5–8. Numerical studies show that the specimen
size does not affect the effective Young’s moduliIn most of the analyzed models, an area of 62.35
of foam materials. However, the effective Young’smm (model width, W ) by 60 mm (model length,
moduli may be overestimated by friction effectL ) has been filled with two-dimensional hexagons;
during the test. Since increasing the dimensionthe characteristic dimensions of the unit cell var-
of surface perpendicular to loading axis increasesied from one model to another. The variation of
friction force, increasing the end surface dimen-the characteristic dimensions allows us to study
sion significantly influences on the effectivethe effects of the cell dimensions on the overall
Young’s modulus calculation. In order to mini-behavior of the analyzed area. Element breadth
mize friction effect and errors on the effectiveb (dimension perpendicular to the plane of the
Young’s modulus evaluation caused by friction be-mesh) is equal to 0.05 mm.
tween heads of the testing machine or bearingCubic Eulerian beam elements (element B23
plates and the end surfaces of the specimen, it isin the ABAQUS finite element code6) of constant
suggested that the end surface dimension shoulddepth t are used to model the hexagons; each side
be smaller than other one.was meshed by two elements. All elements pos-

sess the same depth except for those elements
Cell Dimensions Effectswhich are on the axis of symmetry; the depth of
Regular hexagonal cells with the same strut depththe elements on the axis of symmetry are half the
(t Å 0.05 mm) are used to fill the 62.35 1 60 arearegular depth. If regular hexagons of strut length
(actual F.E. model dimensions are half these val-to thickness ratios are less than ten, linear
ues, 31.17 1 30.00, after considering the symmetryTimoshenko beam elements (element B21 in the
conditions). Four models (rd36 1 39, rc18 1 19,ABAQUS finite element code6) are used. In such
rb12 1 13, and ra9 1 9) are analyzed. In this case,cases, the transverse shear effect may be signi-
side length and cell height are changed simultane-ficant.
ously by the identical ratio. Figure 9 shows thatTable I presents the geometry of models. The
the effective Young’s modulus of the foam decreasesfinite element model name indicates the number
with the increase of cell side length and cell sideof cells in the horizontal and vertical directions of
height. An increase in the cell side length from 0.5 tothe model, respectively. The rc18 1 19 model is
1. mm resulted in a decrease in the effective Young’scomposed by 18 unit cells in X direction and 19
modulus value from 458 to 57.5 MPa. A furtherunit cells in Y direction. The length L and width
increase in the side length to 2 mm has decreasedW are the model dimensions in the X and Y direc-
the value to about 7 MPa. Similar trends are alsotions, respectively.
observed for the Young’s modulus values calculated
from Gibson’s and Kraynik’s models. Figures 9 and

Friction and Specimen Size Effects 10 show the good agreement between the finite ele-
ment results and the other two models. From theFriction between heads of the testing machine or

bearing plates and the end surfaces of the speci- material point of view, the decrease in the foam

3793/ 8E70$$0027 07-31-97 14:29:14 polaas W: Poly Applied



MECHANICAL PROPERTIES OF CELLULAR MATERIALS. I 389

Table I Finite Element Models

Length Width l h
EE Model (mm) (mm) (mm) (mm)

ra9 1 9 30.000 31.176 2.00 2.00
rb12 1 13 31.500 31.176 1.50 1.50
rc18 1 19 30.000 31.176 1.00 1.00
rc18 1 29 45.000 31.176 1.00 1.00
rc18 1 39 60.000 31.176 1.00 1.00
rc27 1 19 30.000 46.764 1.00 1.00
rc32 1 19 30.000 46.764 1.00 1.00
rd36 1 39 30.000 31.176 0.50 0.50
ih18 1 9 30.000 31.176 1.00 2.50
ih18 1 11 30.000 31.176 1.00 2.00
ih18 1 15 30.000 31.176 1.00 1.37
ih18 1 23 30.000 31.176 1.00 0.75
ih18 1 29 30.000 31.176 1.00 0.50
ih18 1 39 30.000 31.176 1.00 0.25

relative density usually yields a decrease in the cantly different (57.55 and 56.46 MPa, respec-
Young’s modulus value. The Young’s modulus val- tively). This insignificant difference in the
ues versus normalized density to the power 3 are Young’s moduli is due to this model having regu-
plotted in Figure 10. lar hexagonal cells with l /h Å 1. In other situa-

tions where the l /h ratio is not equal to one (irreg-
ular hexagonal cells) , the calculated Young’sLoading Direction and Cell Geometric
modulus value is found to vary significantly withAnisotropy Effects
the loading direction.

The horizontal and vertical values of the Young’s Models ih18 1 9, ih18 1 11, ih18 1 15, ih18
moduli for the rc18 1 19 model are not signifi- 1 23, ih18 1 29, and ih18 1 39 (all these models

Figure 6 Effective Young’s modulus E1 of honey-Figure 5 Effective Young’s modulus E2 of honey-
combs with regular hexagons versus foam height L : combs with regular hexagons versus foam height L :

( h ) FEA with friction; ( j ) FEA without friction;( h ) FEA with friction; ( j ) FEA without friction;
(rrrlrrr) Gibson and Ashby2; (– – m – – ) Warren (rrrlrrr) Gibson and Ashby2; (– – m – – ) Warren

and Kraynik.3and Kraynik.3
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Figure 9 Effect of cell size on the effective Young’sFigure 7 Effective Young’s modulus E2 of honey-
modulus of honeycombs with regular hexagons: ( h )combs with regular hexagons versus foam width W :
present analysis; (rrrlrrr) Gibson and Ashby2;( h ) FEA with friction; ( j ) FEA without friction;
(– – m – – ) Warren and Kraynik.3(rrrlrrr) Gibson and Ashby2; (– – m – – ) Warren

and Kraynik.3

the model area are identical for all models. Thehave the same area of 62.35 1 60. mm2) are used
cell height is varied from one model to another,for studying the influence of the cell height and
and all models are loaded in the vertical directionirregularity of cell shape on the effective Young’s
(cell height direction) or the horizontal direction.moduli of foams. The length of the inclined strut

The influence of the cell height on the subse-( l Å 1. mm), the strut depth (t Å 0.05 mm), and

Figure 8 Effective Young’s modulus E1 of honey-
combs with regular hexagons versus foam width W : Figure 10 Effective Young’s modulus of honeycombs

with regular hexagons versus cube of density: ( h )( h ) FEA with friction; ( j ) FEA without friction;
(rrrlrrr) Gibson and Ashby2; (– – m – – ) Warren present analysis; (rrrlrrr) Gibson and Ashby2;

(– – m – – ) Warren and Kraynik.3and Kraynik.3
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Figure 13 E1 /E2 of honeycombs versus cell height.Figure 11 Effective Young’s modulus E2 of honey-
combs with irregular hexagons versus cell height:
( l ) Gibson and Ashby2; (– – – – m – – – – ) present
analysis. model does not evaluate the effective Young’s

modulus for non-regular hexagonal cells, as in
ih18 1 9, ih18 1 11, ih18 1 15, ih18 1 23, ih18

quent Young’s moduli is illustrated in Figures 11 1 29, and ih18 1 39. Gibson and Ashby’s model
and 12. The study shows that the increase of cell shows a small discrepancy with the present finite
height increases the effective Young’s modulus element solution, which increases at large cell
values for the vertical load while it decreases the height. As shown in Figure 13, the anisotropy in
effective Young’s modulus values for the hori- cell geometry increases anisotropy of foam ma-
zontal load. It should be noted that Kraynik’s terials.

The previous study with regular hexagonal
cells and experimental results show that the de-
crease in the foam relative density yields a de-
crease in the Young’s modulus value. However,
as illustrated in Figure 14, the effective Young’s
modulus values for the vertical loading decrease
with respect to increasing foam density. The ma-
terial argument fails to explain the above trend
where increasing the cell height results in a de-
crease in the foam relative density, i.e., the mate-
rial argument generally predicts a decrease in the
Young’s modulus with the increase in cell height.
On the other hand, the structural argument dif-
ferentiates between the following two cases: case
1, in which a vertical load is applied; and case 2,
in which a horizontal load is applied. While the
Young’s modulus increases with the increase in
cell height for case 1, the Young’s modulus de-
creases with the increase of cell height in case 2.
This behavior can be explained in terms of theFigure 12 Effective Young’s modulus E1 of honey-
relative axial and bending stiffness of foams.combs with irregular hexagons versus cell height:

These results suggest how to best manufacture( l ) Gibson and Ashby2; (– – – – m – – – – ) present
analysis. the foam material to increase the load bearing
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Figure 15 Effective Young’s modulus E2 of honey-Figure 14 Effective Young’s moduli of honeycombs
combs with regular hexagons versus strut depth.with irregular hexagons versus cube of density. ( l ) ;
( h ) Present analysis: Euler Beam (----m - - - -) GibsonPresent analysis: E1; ( – – – – m – – – – ) present
and Ashby2; (– – l – – ) Warren and Kraynik3; (1 )analysis: E2 .
present analysis: Timoshenko Beam.

ability with minimum structural weight for spe-
Young’s modulus. The structural and the materialcific service condition.
arguments agree on the increase in the Young’s
modulus with the increase in the strut depth.

Strut Depth Effect

The strut depth effect is similarly studied through
the analyses of the c18 1 19 model. Three differ-
ent thicknesses, 0.05, 0.1, and 0.15 mm, are con-
sidered with regular hexagon elements. Figure 15
shows that an increase in strut depth results in
an increase in the effective Young’s modulus
value; the finite element Young’s modulus value
increased from 57.5 to 1432 MPa. In Figure 15,
the finite element results are compared with the
Gibson and Ashby’s and Warren and Kraynik’s
models. The results for the finite element analyses
and Gibson and Ashby’s model are in good agree-
ment. However, about 25% discrepancy between
finite element results and the Warren and Kray-
nik’s model is observed for the case with the
largest thickness. In the last case, the 2L /t ratio
is 6.7, and the Timoshenko beam elements are
used for the analysis in order to account for the
transverse shear effect. A little bit smaller value
1417 MPa is obtained for the vertical effective Figure 16 Effective Young’s modulus E2 of honey-
Young’s modulus. combs with various strut depths versus cube of density.

As illustrated in Figure 16, the increase of strut ( h ) present analysis: Euler beam; (----m - - - -) Gibson
thickness results in the increase of the relative and Ashby2; (– – l – – ) Warren and Kraynik3

(1 ) present analysis: Timoshenko beam.density of the foam and the increase of effective
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• The effective Young’s modulus increases
with the increase of the strut depth as well
as cell height.

• There was no significant change in the effec-
tive Young’s modulus with respect to foam
dimensions and model aspect ratio.

• Study shows that friction between heads of
the testing machine or bearing plates and the
end surfaces of the specimen due to lateral
expansion of the specimen should be care-
fully considered for machine testing. Since
increasing the dimension of surface perpen-
dicular to loading axis increases friction
force, then increasing end surface dimension
significantly influences the effective Young’s
modulus calculation.

• Results for uniform sections are compared
for ones with varied strut intersections. For
both cases, foam densities remain identical.Figure 17 Effective Young’s modulus E2 of honey-
Results show that effective stiffnesses forcombs with uniform strut section and thick strut inter-
both cases are almost the same up to densitysection: ( l ) thick plateau border; (----m - - - -) uniform

section. ratio Å 2. However, significant discrepancy
is observed above that ratios.

• The effect of the loading direction on the ef-
Strut Intersection Thickness Effect fective Young’s modulus is due to anisotropic

nature of foams, and such anisotropy inIn this section, we observe the effect of the thick-
foams reflects the anisotropy in cell struc-ness at the intersection on macroscopic mechani-
tural geometry and in the cell materials.cal properties of the foams. The thicknesses at the

intersection are taken as 0.05, 0.075, and 0.1 mm.
As shown in Figure 17, results for uniform sec-
tions are compared with ones for varied sections. REFERENCES
For both cases, foam densities remain identical.
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